Study of probe-sample distance for biomedical spectra measurement
نویسندگان
چکیده
BACKGROUND Fiber-based optical spectroscopy has been widely used for biomedical applications. However, the effect of probe-sample distance on the collection efficiency has not been well investigated. METHOD In this paper, we presented a theoretical model to maximize the illumination and collection efficiency in designing fiber optic probes for biomedical spectra measurement. This model was in general applicable to probes with single or multiple fibers at an arbitrary incident angle. In order to demonstrate the theory, a fluorescence spectrometer was used to measure the fluorescence of human finger skin at various probe-sample distances. The fluorescence spectrum and the total fluorescence intensity were recorded. RESULTS The theoretical results show that for single fiber probes, contact measurement always provides the best results. While for multi-fiber probes, there is an optimal probe distance. When a 400- μm excitation fiber is used to deliver the light to the skin and another six 400- μm fibers surrounding the excitation fiber are used to collect the fluorescence signal, the experimental results show that human finger skin has very strong fluorescence between 475 nm and 700 nm under 450 nm excitation. The fluorescence intensity is heavily dependent on the probe-sample distance and there is an optimal probe distance. CONCLUSIONS We investigated a number of probe-sample configurations and found that contact measurement could be the primary choice for single-fiber probes, but was very inefficient for multi-fiber probes. There was an optimal probe-sample distance for multi-fiber probes. By carefully choosing the probe-sample distance, the collection efficiency could be enhanced by 5-10 times. Our experiments demonstrated that the experimental results of the probe-sample distance dependence of collection efficiency in multi-fiber probes were in general agreement with our theory.
منابع مشابه
Hybrid Model for Bulk Current Injection Probe
A new hybrid-model for BCI probe is derived . This model is built based on the probe's internal structure without refinements, and by carrying out just one electrical measurement for the reflection coefficient, so that it can be generalized and used in studying the effect of layout parameters in the aim of improving the probe high frequency performance, which helps the developer in design stage...
متن کاملMonte Carlo-based optimization of a gamma probe system for sentinel lymph node mapping
Introduction: Sentinel lymph node biopsy (SLNB) is a standard surgical technique to identify sentinel lymph node (SLN) for the staging of early breast cancer. Nowadays, two methods are used for the identification of SLN: blue dye method aiding visually and radioactive dye using gamma detector. A wide range of gamma probe systems with different design and performance are used in...
متن کاملOptimal Feature Extraction for Discriminating Raman Spectra of Different Skin Samples using Statistical Methods and Genetic Algorithm
Introduction: Raman spectroscopy, that is a spectroscopic technique based on inelastic scattering of monochromatic light, can provide valuable information about molecular vibrations, so using this technique we can study molecular changes in a sample. Material and Methods: In this research, 153 Raman spectra obtained from normal and dried skin samples. Baseline and electrical noise were eliminat...
متن کاملSurface enhancement in near-field Raman spectroscopy
The intensity and selection rules of Raman spectra change as a metal surface approaches the sample. We study the distance dependence of the new Raman modes with a near-field scanning optical microscope ~NSOM!. The metal-coated NSOM probe provides localized illumination of a metal surface with good distance control. Spectra are measured as the probe approaches the surface, and the changes elucid...
متن کاملFluorescence suppression using wavelength modulated Raman spectroscopy in fiber-probe-based tissue analysis.
In the field of biomedical optics, Raman spectroscopy is a powerful tool for probing the chemical composition of biological samples. In particular, fiber Raman probes play a crucial role for in vivo and ex vivo tissue analysis. However, the high-fluorescence background typically contributed by the auto fluorescence from both a tissue sample and the fiber-probe interferes strongly with the relat...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 10 شماره
صفحات -
تاریخ انتشار 2011